Learning Transformations for Clustering and Classification Learning Transformations for Clustering and Classification
نویسنده
چکیده
A low-rank transformation learning framework for subspace clustering and classification is here proposed. Many high-dimensional data, such as face images and motion sequences, approximately lie in a union of low-dimensional subspaces. The corresponding subspace clustering problem has been extensively studied in the literature to partition such highdimensional data into clusters corresponding to their underlying low-dimensional subspaces. However, low-dimensional intrinsic structures are often violated for real-world observations, as they can be corrupted by errors or deviate from ideal models. We propose to address this by learning a linear transformation on subspaces using matrix rank, via its convex surrogate nuclear norm, as the optimization criteria. The learned linear transformation restores a low-rank structure for data from the same subspace, and, at the same time, forces a high-rank structure for data from different subspaces. In this way, we reduce variations within the subspaces, and increase separation between the subspaces for a more robust subspace clustering. This proposed learned robust subspace clustering framework significantly enhances the performance of existing subspace clustering methods. Basic theoretical results here presented help to further support the underlying framework. To exploit the low-rank structures of the transformed subspaces, we further introduce a fast subspace clustering technique, called Robust Sparse Subspace Clustering, which efficiently combines robust PCA with sparse modeling. When class labels are present at the training stage, we show this low-rank transformation framework also significantly enhances classification performance. Extensive experiments using public datasets are presented, showing that the proposed approach significantly outperforms state-of-the-art methods for subspace clustering and classification.
منابع مشابه
دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان
Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of discriminant classifiers training or their error. In this ...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملOptimizing the Grade Classification Model of Mineralized Zones Using a Learning Method Based on Harmony Search Algorithm
The classification of mineralized areas into different groups based on mineral grade and prospectivity is a practical problem in the area of optimal risk, time, and cost management of exploration projects. The purpose of this paper was to present a new approach for optimizing the grade classification model of an orebody. That is to say, through hybridizing machine learning with a metaheuristic ...
متن کاملAn improved opposition-based Crow Search Algorithm for Data Clustering
Data clustering is an ideal way of working with a huge amount of data and looking for a structure in the dataset. In other words, clustering is the classification of the same data; the similarity among the data in a cluster is maximum and the similarity among the data in the different clusters is minimal. The innovation of this paper is a clustering method based on the Crow Search Algorithm (CS...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کامل